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Molecular interactions in beams 
 
A notable advancement in the experimental study of intermolecular forces has come from the development of 
molecular beams, which consist of a narrow beam of particles, all having the same velocity, traveling through an 
evacuated vessel. The beam is directed towards other molecules, and the scattering of molecules that occurs on 
impact is used to study intermolecular interactions. 
 
The basic arrangement for a molecular beam experiment is shown in the figure. The slotted disks make up the 
velocity selector. They rotate in the path of the beam and allow only those molecules having a certain velocity to 
pass through. Any desired velocity can be chosen by altering the speed of rotation. The target gas may be 
enclosed in a container, or may be in the form of another molecular beam in a perpendicular direction. The latter is 
called crossed beam technique and gives a lot of useful information because the velocities of both target and 
projectile molecules can be controlled. The intensity of the incident beam is measured by the incident beam flux, I, 
which is the number of particles per unit area per unit time. 

 
The detectors may consist of a chamber fitted with a sensitive pressure gauge or an ionization detector, in which 
the incoming molecule is first ionized and then detected electronically. The state of the scattered molecules may 
also be determined spectroscopically, and is of interest when the 
collisions change their rotational and vibrational states.  
 
The primary experimental information from a molecular beam 
experiment is the fraction of molecules in the incident beam that are 
scattered in a particular direction (angle ). The fraction is normally 
expressed in terms of dI, the number of molecules that are scattered 
per unit time into a cone that represents the area covered by the 
‘eye’ of the detector.  This number is reported as the differential 
scattering cross section σ, and is the constant of proportionality 
between the value of dI and the intensity of the incident beam I, the 
number density of target molecules N and the infinitesimal path 
length dx through the sample. 
 

dI  =  σ I N dx 
 
The differential scattering cross section σ has the dimensions of area. Its value depends upon the impact 
parameter b, which is the initial perpendicular separation of the paths of the colliding molecules, and the details of 
the intermolecular potential. The role of the impact parameter is most easily seen by considering 
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the impact of two hard spheres. If b = 0, the lighter projectile is on a trajectory that leads to head-on collision, so 
that the only scattering intensity is detected when the detector is at  = 180. If the impact parameter is so large (b 
> RA+RB, where RA and RB are the radii of the two spheres respectively) that the spheres do not make contact, 
there is no scattering and the scattering cross section is zero at all angles except  = 0. Glancing blows with 0 < b 
< RA+RB lead to scattering intensity in cones around the initial line of flight direction. 
 
Scattering effects: The scattering pattern of real molecules, which are not hard spheres, depends on the details 
of the intermolecular potential, including the anisotropy that is present when the molecules are non-spherical. The 
scattering also depends on the relative speed of approach of the two particles: a very fast particle might pass 
through the interaction region without much deflection, whereas a slower one on the same path might be 
temporarily captured and undergo considerable deflection. The variation in the scattering cross-section with the 
relative speed of approach should therefore give information about the strength and range of the intermolecular 
potential. 
A further point is that the outcome of collisions is determined by quantum, not classical, mechanics. The wave 
nature of the particles can be taken into account, at least to some extent, by drawing all classical trajectories that 
take the projectile particle from source to detector, and then considering the effects of interference between them. 
 

Two quantum mechanical effects are of great importance. A particle with 
a certain impact parameter might approach the attractive region of the 
potential in such a way that it is deflected towards the repulsive core, 
which then repels it out through the attractive region to continue its flight 
in the forward direction. Some molecules, however, also travel in the 
forward direction because they have impact parameters so large that they 
are undeflected. The wave functions of the particles that take the two 
types of path interfere, and the intensity in the forward direction is 
modified. This effect is called glory scattering. [To see this effect with 
light rays, look at a bright moon in a sky with thinly dispersed clouds. A 
bright halo is seen around the moon.] 
 
The second effect is a strongly 
enhanced scattering in a non-
forward direction. This effect is 

called rainbow scattering because the same mechanism accounts for the 
appearance of an optical rainbow. As the impact parameter decreases, 
there comes a stage when the scattering angle passes through a maximum 
and the interference between the paths results in a strongly scattered 
beam. The rainbow angle is the angle for which dθ/db = 0 and the 
scattering is strong. The detailed analysis of scattering data can be very 
complicated, but the main outcome is clear: the intensity distribution of the 
scattered particles can be related to the intermolecular potential, and a 
detailed picture can be built up of its radial and angular variation. Testing of 
the effects of van der Waals interaction and Lennard-Jones potential 
becomes possible. 
 

MOLECULAR COLLISION THEORY & GAS-PHASE REACTION DYNAMICS 
 
Assumptions of the kinetic theory of gases and rates of gas-phase reactions (chemical kinetics): 
 

1. Gases consist of particles moving in all directions with velocities ranging from zero to very high values. 
2. The velocities of the particles at any given temperature follow a Gaussian (or Maxwell-Boltzmann) 

distribution. 
3. The mean velocity of the particles is directly proportional to the temperature. 
4. The particles collide with each other and with the walls of the vessel during their random motion. 
5. These collisions are perfectly elastic (the total momentum is conserved). 
6. Reactions take place when molecules collide with each other. Therefore rate of a reaction must be 

proportional to the collision frequency. 
7. The rates of reactions increase with temperature since the velocity of the molecules and therefore the 

collision frequency increases. 
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8. All collisions do not lead to reaction. The colliding molecules must have a certain minimum energy called 
activation energy for successful reaction. 

 
Dependence of the reaction rate on activation energy and temperature are given by the empirical Arrhenius 
equation: 
 

2RT
    ln aE

dT
kd
  or 

RT
EAk a ln    ln  or RT

Ea

Aek


     

 
The rates of reactions calculated on the basis of the aforesaid assumptions give very high values compared to the 
experimentally obtained values. Therefore modifications are necessary taking into account the following factors 
also: 
 

1. Collisions between real molecules are not perfectly elastic. 
2. All collisions with the right activation energy cannot be fruitful. The orientations of the molecules at the time 

of collision are also important. 
 
Till now, examination of kinetics at a molecular level was not possible, and all the above were only intelligent 
assumptions about the nature of chemical reactions. However, with the development the molecular beam 
apparatus in the 1950s by Kusch and coworkers at the Columbia University, narrow beams of molecules having a 
fixed velocity could be obtained (for description and diagram of the apparatus, see earlier discussion on molecular 
interaction in beams). Using this, the actual number distribution of molecules having different velocities could be 
obtained and the Maxwell-Boltzmann distribution verified. The other assumptions of the kinetc theory and rates of 
reactions could also be studied and verified at a molecular level. The ensuing discussion is an introduction to such 
studies. 
 
The relationship of mean free path and collision frequency to collision cross section: 

 
Imagine the molecules to be hard spheres 
(so that collisions are elastic) of diameter d. 
For the time being, let us also imagine that 
only the molecule under consideration is 
moving while all the others are stationary. 
Then, when our molecule moves along a 
straight line, it will collide with all other 
molecules that lie within a cylinder of 
diameter 2d surrounding its path. The area 
of cross section of this collision cylinder is 
the collision cross section, σ. The area σ 
= πd2. If we are considering the motion of 
our molecule with a velocity u over an 
infinitesimal time interval dt, then the length 

of the collision cylinder is u.dt. The volume of the cylinder is σ.u.dt. If the number density of molecules (ie. number 
of molecule per unit volume) is ρ, then the number of collisions dNcoll in the time interval dt will be 

dNcoll  =  ρ.σ.u.dt 
 
Therefore the collision frequency (ie. number of collisions per second) zA is given by 

2/1
B8k

            







m
Tu

dt
dNz coll

A 
  

where kB is the Boltzmann constant, T the temperature and m the mass of the particles. If all collisions lead to 
reactions, then the collision frequency should be equal to the rate of reaction. 
 
In the above treatment, we have considered only one particle as moving while all others were fixed. If two different 
particles of mass m1 and m2 are moving relative to each other, then the velocity of one relative to the other can be 
obtained by considering them as one particle with a reduced mass µ = m1m2/(m1+m2) moving with respect to the 
other being fixed. If both particles are of the same mass, then µ = m/2 and it can be shown that the relative velocity 
ur = 21/2u. Therefore: 
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uuz rA  1/22           (1) 

 
Since the velocity (distance traveled per second) is u and the number of collisions per second is zA, the mean free 
path l (distance between collisions) is given by: 
 

 1/21/2 2
1    
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Calculation of the rate of a bimolecular gas-phase reaction using hard-sphere collision theory and an 

energy-dependent reaction cross section 
 
Bimolecular gas-phase reactions are among the simplest elementary kinetic processes that occur in nature. The 
simplest gas-phase reaction is the hydrogen exchange reaction: 
 

HA  +  HB-HC  →  HA-HB  +  HC 
 
Another reaction more convenient to study is: 
 

F(g)  +  D2(g)  →  DF(g)  +  D(g) 
 
In the following discussions, we will examine some of the current models used in the study of such reactions. The 
simple general reaction we shall consider is: 
 

A(g)  +  B(g)  →  products 
 

The rate of this reaction is given by: ]][[    ][    BAk
dt
Ad

    (2) 

 
According to the earlier discussion of hard sphere collisions, this should be equal to the collision frequency. 
Therefore using equation (1), we get 
 

v  =  ZAB  =  σAB.ur.ρA.ρB    (3) 
 
where ZAB is the frequency of collision between A and B molecules, σAB is the collision cross section and ρA, ρB are 
the number densities of A and B molecules. The collision cross section is given by: 
 

σAB  =  (dAB) 2 
 
where dAB is the sum of the radii of the two colliding spheres. The collision frequency ZAB has units of  
collisions.m-3.s-1, where the unit “collisions” is usually omitted. ZAB also gives the number of product molecules 
formed per unit volume per unit time, which is the rate constant. Comparing equations (2) and (3), we get: 
 

k  =  σAB.ur (since [A] = ρA and [B] = ρB)  (4) 
 
The rate constant k has units of ZAB/ρA.ρB or molecules.m-3.s-1/(molecules.m-3)2 or molecule-1.m3.s-1. To convert into 
the familiar units of dm3.mol.s-1 (1 mole = NA molecules where NA is the Avogadro number and 1 m3 = 1000 litres), k 
has to be divided by 1000 NA. Therefore: 
 

k  =  1000.NA.σAB.ur  dm3.mol.s-1. 
 
The rate constants calculated by the above hard-sphere collision theory equation are found to be about 30 
orders of magnitude larger than experimentally observed rate constants! Further, since ur  T1/2, this theory 
predicts that k should show a temperature dependence of T1/2, whereas Arrhenius equation and experimental 
measurements generally show that k is exponentially dependent on 1/T. Therefore the above theory requires 
modification. 
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Effect of collision energy 
 
We assumed that each pair of reactant molecule approach with a relative speed of ur, but actually they approach 
each other with a distribution of speeds. As two molecules collide, the valence electrons of the two molecules repel 
each other so that no reaction can occur unless the relative speed is sufficient to overcome the repulsive force. The 
first step in the modification to take the speed dependence into account is to introduce a reaction cross section 
σr(ur) which depends on the speed of reactant molecules in place of the earlier collision cross section σAB. The rate 
constant for all molecules colliding with a relative speed of ur is given by an equation similar to equation (4). 
 

k(ur)  =  ur.σr(ur)   (5) 
 
To obtain the calculated rate constant k, we must average the right hand side of the above equation over all 
possible collision speeds ie. integrate the equation within limits 0 to . Further, to compare the result with the 
traditional Arrhenius form of k, we have to change the dependent variable from ur to Er, the relative kinetic energy. 

Er  =  ½ µ.ur
2 

 ur  =  (2Er/µ)1/2 
 
Then the energy dependence of the reaction cross section is represented by σr(Er) such that σr(Er) = 0 when Er 
< E0 and σr(Er) = π(dAB)2 when Er > E0, where E0 is the threshold energy to overcome repulsion. Introducing these 
changes and avoiding the involved mathematics, we get an expression for k of the form: 
 









 

Tk
E

euk
B

TkE
ABr

B 0/ 1..    0    (6) 

 
where σAB is the hard-sphere collision cross section. The rate constant calculated using this expression gives a 
value a few orders of magnitude higher than the experimental value. Therefore the theory has to be further 
modified. Different models for σr(Er) must now be tested which will give different expressions for k. The validity of 
any model has to be tested experimentally. 
 
Effect of collision geometry 

The simple energy-dependent reaction cross section used to derive equation (6) is not realistic. To see why, let us 
consider the following reaction geometries. The line joining the centres of the two colliding spheres is called the line 
of centres (loc). In the first case, the molecules approach along the line of centeres and will come to a stop after a 

head-on collision. The full energy of the impact will be used for reaction. But 
in the second case, the molecules are not approaching along the line of 
centres, and will undergo only a grazing collision. Most of the kinetic energy 
of the molecules still remains with them as they fly apart. Only that 
component of the kinetic energy which lies along the line of centres will be 
useful for reaction. Thus a reasonable model for the energy-dependent 
reaction cross section σr(Er) must depend on the component of the kinetic 
energy which lies along the line of centres. This is called the line-of-centres 
model for σr(Er). If we denote the relative kinetic energy along the line of 
centeres by Eloc, then we are assuming that the reaction occurs when Eloc > 
E0. The reaction cross section must depend on the impact parameter b, 
which is the perpendicular distance between the lines of motion of the two 
spheres. If b = 0, the molecules hit head-on, and if b > dAB (dAB = RA + RB), 
the molecules will pass on without colliding and the collision cross section 
must be equal to zero. The derivation is a bit geometrically involved and is 
not discussed here. But the result is such that σr(Er) = 0 when Er < E0 and 

σr(Er) = π(dAB)2










rE
E01  when Er > E0. Then the rate equation for the 

bimolecular gas-phase reaction becomes: 

TkE
ABr

Beuk /0..          (7) 
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which differs from equation (6) by a factor of 









Tk
E

B

01 . But the results calculated using equation (7) are still 

higher than the experimental values by several orders of magnitude. Therefore the theory requires further 
modifications. 

Effect of the orientation of colliding molecules 

Results show that the hard-sphere collision theory does not 
accurately account for the magnitude of the Arrhenius A factor. 
One of the fundamental flaws of this model is the assumption 
that every collision of sufficient energy is reactive. In addition to 
an energy requirement, the reacting molecules may need to 
collide with a specific orientation for the chemical reaction to 
occur.  For example, consider the reaction: 

Rb(g)  +  CH3I(g)  →  RbI(g)  +  CH3(g) 

Experimental studies reveal that this reaction occurs only when 
the rubidium atom collides with the iodomethane molecule in the vicinity of the iodine atom. Collisions between 
rubidium and the methyl end of the molecule do not lead to reaction. This is indicated by the cone of nonreactivity in 
the figure. Since the earlier model does not take the effect of molecular orientation into account, it must 
overestimate the rate constants for reactions that are orientation dependent. However, this steric factor alone 
cannot account for the significant differences observed between the experimental and calculated Arrhenius A 
factors. Therefore the theory requires still further modification. 

Effect of internal energy of the reactants 

Reaction cross sections for hydrogen molecular ion with atomic 
helium are plotted in the figure. 

H2
+(g)  +  He(g)  →  HeH+(g)  +  H(g) 

Each curve corresponds to the reactant H2
+ in a specific vibrational 

state. For vibrational states v = 0 to v = 3, there is a threshold energy 
of about 70 kJ.mol-1. This is because for H2

+ molecules with 
vibrational quantum number v = 0 to v = 3, the total vibratonal energy 
is less than E0. Additional translational energy is required to initiate 
reaction in these states. Molecules having v > 3 do not require 
additional translational energy sice their vibrational energy is greater 
than E0. The internal energy of a molecule is distributed among the 
discrete rotational, vibrational and electronic states. Data such as in 
the figure tell us that chemical energy depends not only on the total 
energy of the reacting molecules but also on how that energy is 
distributed among these internal levels. Simple hard-sphere collision 
theory considers only the translational energy of the molecules. 
Energy can also be exchanged between the different degrees of 

freedom during the reactive collisions. For example, vibrational energy can be converted to translational energy and 
vice versa. 
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A reactive collision can be described by a centre-of-mass coordinate system 

 

Consider the reaction A(g)  +  B(g)  →  C(g)  +  D(g). For simplicity we will assume there are no intermolecular 
forces. Before collision the molecules A and B are traveling with velocities uA and uB respectively. The collision 
generates products C and D moving away with velocities uC and uD respectively. We will describe the collision 
process in the centre-of-mass coordinate system. The idea is to view the collision from the centre of mass of the 
two colliding molecules. The centre of mass lies along the vector r = rA→rB that connects the centres of the two 
colliding molecules. The location of R, the centre of mass, on this vector depends on the masses of the two 
molecules and is defined by: 

BA

BBAA

mm
rmrmR




      and  
BA

BBAA
CM mm

umumu



     

where uCM is the velocity of the centre of mass. Then it can be shown that the total kinetic energy of the reactants 
consist of two components, one depending on the velocity of the centre of mass, and the other on the relative 
velocity of the molecules. 

22

2
1

2
1    rCMreact uMuKE   

where M is the total mass (mA+mB) and µ is the reduced mass mAmB/(mA+mB). 
 
Alternative treatment of gas-phase reaction dynamics: The symbols used in the equations and the general 
approach given in Atkins, Physical Chemistry 6th Edn., is slightly different, but gives the same overall results. This 
treatment is discussed below: 
 
In this treatment, the symbol relc  is used to represent relative velocity of the colliding molecules instead of ‘ur’ in 
the earlier discussion. Number density (number of molecules per litre) of molecules of A is given by NA [A], where 
NA is the Avogadro number and [A] the number of moles of A per litre. The collision frequency ‘z’, (which is the 
number of collisions encountered by a single molecule in unit time) is then given by: 
 

][    ANcz Arel   (8) 
 
which is similar to equation (1) in the earlier discussion. But  

 
2
1

8    







πm
kTc ;  cc rel 2

1

2      and   =  ½ m  for a single type of molecule A. 

 
Substituting in equation (8) we get collision frequency for one type of molecules A as: 
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][8    ][    
2
1

ANkTANcz AArelA 










    (9) 

 
Then the total collision density ‘Z’ (which is the total number of collisions encountered by all the molecules 
together) is obtained by multiplying the collision frequency with the number density of A molecules: 
 

][][8
2
1    ][

2
1    

2
1

ANANkTANzZ AAAAAA 










  

 
The factor ½ is introduced to account for the fact that a single collision of molecule A with another A may be 
counted as two different collisions (first A with second A, and also as second A with first A). Thus: 

      222
1

22 ][8
2
1    ][

2
1    ANkTANcZ AArelAA 











  (10) 

 

or if the mass of A is directly used,   222
1

][4    AN
m
kTZ AAA 









   (11) 

 
If collisions are between two different types of molecules A and B, then the factor ½ is not necessary, and the 
collision density is given by: 
 

      ]][[8    ]][[    22
1

2 BANkTBANcZ AArelAB 










  (12) 

Collision densities may be very large. For example, in nitrogen at room temperature and pressure, with d = 280 pm, 
Z = 51034 m–3 s–1. 
 
Using the same arguments for the influence of activation energy Ea, and comparing with equation (7), 
 

  RT
E

A
RT
E

ArelA

aa

eANkTeANczk










 ][8    ][        

2
1


   (13) 

 
Correction for all other factors influencing the reaction, such as orientation, internal energy of molecules etc. are 
introduced through a “steric factor” P, so that the reactive cross section *  =  P. Thus, 
 

  RT
E

A
RT
E

Arel

aa

eANkTPeANcPk










 ][8    ][    

2
1


    (14) 

 

Comparing with the empirical Arrhenius equation RT
Ea

Aek


     where A is called the pre-exponential factor, the pre-
exponential factor as given by molecular dynamical calculations is  
 

   ][8  or                   ][
2
1

ANkTPANcP AArel 









   (15) 

 
 
 



© Ravi Divakaran 

 9 

Collision frequency when pressure of the gas is given: 
 
Form equation (8),  ][    ANcz Arel ,      or    Arel Ncz         for 1 mole. 
 

Since number density of molecules (number of molecules per unit volume) is 
V
N A , and  

P
RTV  , 

 

number density  =  
kT
P

RT
PN A  .  Therefore,  

kT
Pcz rel         (16) 

 
 
In dimerisation of methyl radicals at 25C, the experimental pre-exponential factor is 
2.4 × 1010 L mol-1 s-1. What are (a) the reactive cross section and (b) the p-factor for the reaction, 
if C–H bond length is 154 pm. {April 2005} 
[Ref: (1) Physical Chemistry, Atkins, 6th edn, page 846, problem 27.1; (2) valuation scheme for this 
exam.] 
 
  d  =  2 × 154 pm  =  308 pm  =  308 × 10–12 m. 
 (a) Collision cross section    =  d2  =  3.14 × (308 × 10–12)2 m2  =  297872.96 × 10–24 m2   

=  2.98 × 10–19 m2   
 (b) According to Arrhenius’ theory, rate constant /RT-EaAe k  , where ‘A’ is the collision  
                  frequency factor, or the pre-exponential factor. According to reaction dynamics predictions, 

                  NkTd Ncσ rel
2
1

2 8      A  










 , where  is the reduced mass;   =

21

21

mm
mm


. 

                  Mass of one methyl radical = kg102.49    kg10
10023.6

15 26-3
23 


  

                       kg101.245    
kg102.49  kg102.49
kg102.49kg102.49 µ  26-

26-26-

-26-26





  

                    2
1

26

123-
23212-

kg10245.114.3
K298JK101.388  106.023  m10308  3.14  A  
















 

                       =  -1232-24 s m 917.39  106.023  m1048649  3.14    =  16.458  107 m3 mol–1 s–1. 
 
                   But given that the experimental value of A  =  2.4 × 1010 L mol-1 s-1 
            =  2.4 × 107 m3 mol-1 s-1 ; 
 

        P  =  steric factor  =  1-1-37

-1-137

s mol m 10  16.458
 s mol m 10  2.4    

A of  valuecalculated
A of  valuealexperiment




  

            =  0.1458. 
 

       Then in (a),  Reaction cross section *  =    P  =  2.98 × 10–19 m2  0.1458 
         =  0.4345 × 10–19 m2. 
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Calculate the collision frequency ‘z’ and the collision density ‘Z’ in CO. R = 180 pm at 25C and 
100 kPa. What is the percentage increase when the temperature is raised by 10 K at constant 
volume? {April 2005} 
[Ref: (1) Physical Chemistry, Atkins, 6th edn, page 844, Exercise 27.1(b); (2) valuation scheme for this 
exam.] 
 

Collission frequency z  =  
kT

 Pcσ rel , where ‘P’ is the pressure and 
2
1

8   










kT c rel  

  =  
21

21

mm
mm


  =  m
2
1  for a single type of molecule;   

Therefore   =  kg3
23 10

10023.6
28

2
1 


   =  2.3244  10–26 kg.  and     =  d2. 

 

z  =  
kT

 Pcσ rel  =  
kT
PkTd 

2
1

2
1

2
1

2
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